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Introduction

An ambulance location problem has been extensively studied since as early as 1970s
(Church and ReVelle 1974; Toregas et al. 1971). The problem is to determine
the locations of ambulances to provide maximum coverage to potential demand
sites. Locations of available ambulances are a major factor to determine the
response times to arriving calls. Brotcorne et al. (2003); Farahani et al. (2012);
Li et al. (2011); Owen and Daskin (1998); ReVelle and Eiselt (2005) provide a
comprehensive review of location problems in emergency medical service (EMS)
systems.

Ambulance location problems are often formulated as a covering problem. A
demand site is considered covered if it can be reached from an ambulance station
within a time standard. Then, the problem finds optimal number and locations for
ambulances so that the sum of covered demand sites is maximized. The classic
ambulance location problems model the coverage as deterministic. It assumes that
ambulances are always available to respond to emergency calls. On the other hand,
more recent models incorporate randomness in ambulance’s availability. These
models often use the concept of busy fraction of an ambulance—probability for
being unavailable to respond to a call.

Our study has been motivated by the fact that an ambulance dispatching policy is
an important factor affecting ambulance’s availability. An ambulance dispatching
policy determines which of the ambulances available at the moment is sent to
serve an incoming call. A choice made for the current call determines the available
ambulances and their coverage for the next arriving call. This implies that there
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is an interaction effect between the location decision and dispatching policy; an
optimal location solution under one dispatching policy may not be the optimal
solution for another policy. Therefore ambulance locations should be determined
while considering an ambulance dispatching policy. We construct our model for a
specific dispatching policy to explicitly incorporate the effect of a dispatching policy
on ambulance location solution. Given a temporal sequence of call arrivals, which is
sampled from real data, the model simultaneously determines ambulance locations
and call assignments to ambulances under the dispatching policy.

Our model is also designed to take into account variations in call arrivals. Most
of the probabilistic models in the ambulance location literature assume stationary
call arrivals and use an average call arrival rate in the model. However, the actual
EMS call data that the volume of call arrivals varies significantly over the course of
a day, weekdays vs. weekends, and between seasons (e.g., Matteson et al. 2011). To
properly represent the variations in call arrivals, we take a stochastic programming
approach and incorporate the uncertainty of call arrivals into location decisions.

Problem Formulations and Scenario Decomposition
Implementation

We develop a solution algorithm for an ambulance location problem that takes
into account an ambulance dispatching policy and variations in EMS call arrivals.
For this, we apply a stochastic programming approach. Stochastic programming
is a framework for modeling an optimization problem with two types of decision
variables, here-and-now and recourse. A here-and-now decision is a proactive and
planning decision that should be made before observing specific outcomes (e.g.,
production cost or future demands). A recourse decision is made in reaction against
the observations on the outcome, and the here-and-now decision made earlier is
adapted accordingly. In general, a recourse decision depends upon a here-and-now
decision. With the decision structure, stochastic programming enables to consider
uncertainties in the outcomes and derive a solution that is robust to the uncertainties.
Stochastic programming uses a set of scenarios, i.e., possible futures, and derives
solutions that perform well across all scenarios. Scenarios is a realization of the
uncertainties.

In our algorithm, an ambulance location decision corresponds to the here-and-
now decision, and a dispatching is the recourse decision. A scenario in our problem
is defined by a sequence of call arrivals. We determine ambulance locations before
observing call arrivals under a particular scenario. Then after observing actual call
arrivals, ambulance dispatching decisions are made given the ambulance location
decision. By taking a stochastic programming approach, we derive an ambulance
location solution that performs well across all possible scenarios.
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Scenario Decomposition for Stochastic Programming

Let � denote a random vector for call arrivals with a support „ and known
distribution P. We assume that � has a finite support, and there are N realizations
�r, r 2 f1; : : : ; Ng. A realization of the random vector is referred to as a scenario.
We consider a stochastic program for an ambulance location problem:

max

(
NX

rD1

pr � f .x; �r/ W x 2 X � Z
C
)

; (1)

where x is a decision vector for ambulance locations, pr is the probability of scenario
r, and f .x; �r/ is the sum of covered demands by solution x under scenario �r.

One of the approaches to solve (1) is scenario decomposition. The main idea
of scenario decomposition is to decompose the main problem (1) into N sub-
problems by maintaining an individual copy of here-and-now decision variable for
each scenario, xr. Because location solutions should not depend on a scenario,
non-anticipativity constraint is imposed to require x1 D � � � D xN . With the non-
anticipativity constraint represented by the equality

PN
rD1 Arxr D 0, (1) can be

rewritten as

max

(
NX

rD1

fr.xr/ W xr 2 X 8r;
NX

rD1

Arxr D 0

)
; (2)

where fr.xr/ D pr � f .xr; �r/. Unfortunately, it is difficult to incorporate the non-
anticipativity constraint to the sub-problems. To overcome the difficulty, Lagrangian
relaxation is applied to (2) (Fisher 2004). By dualizing the non-anticipativity
constraint, the Lagrangian dual of (2) is obtained as follows:

min
�

(
zD D

NX
rD1

maxffr.xr/ C �Arxr W xr 2 X 8rg
)

; (3)

where � is a dual vector. This provides an upper bound for (2). By choosing �

such that xr is identical for all r 2 f1; : : : ; Ng, we can find an optimal solution of (2)
(Carøe and Schultz 1999). To solve (3), we implement a simple algorithm, following
an algorithm proposed by Ahmed (2013). The algorithm is shown in Algorithm 1.

Algorithm 1 produces candidate solutions of the sub-problems for each scenario
and calculates upper bound by the sum of the Lagrangian objective functions of
the candidate solutions. A lower bound is also calculated by evaluating the original
objective values of the candidate solutions. After obtaining the candidate solutions
for each scenario, Algorithm 1 updates � such that the upper bound is tightened.
Then this procedure is repeated until the gap between lower and upper bound is
close enough or the number of iterations reaches a certain threshold value.
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Algorithm 1 Scenario decomposition
UB 1; LB �1; x�  ¿; nI  0; � 0
while UB� LB > " and nI < nmax do

nI  nI C 1

for r D 1 to N do
solve maxffr.x/C �Arxg
let vr be the optimal value and xr be an optimal solution
u 0

for r0 D 1 to N do
compute fr0 .xr/ and set u uC fr0 .xr/

end for
if LB < u then

LB u; x�  xr

end if
end for
UB PN

rD1 vr

update �

end while

To update �, we use a sub-gradient method. Given �0, the sub-gradient method
calculates the gradient of zD at �0. The gradient at �0 is given by

PN
rD1 Arxr, where

xr is the solution to maxffr.x/ C �0Arxg. Then the method updates the current �0 by
using the gradient such that (3) can be minimized.

Modeling for the Ambulance Location Problem Given
a Single Scenario

In the solution approach described in section “Scenario Decomposition for Stochas-
tic Programming”, we need to solve for each scenario the following problem:

maxffr.x/ C �Arxg (4)

We formulate this problem as an integer program. Recall that we want to
incorporate the effect from a dispatching policy into the location decision. This
is achieved by introducing a constraint to ensure that ambulances are assigned to
arriving calls based on a chosen dispatching policy. In a sense, it is a location-routing
problem with a restriction that a routing is determined once a location decision is
given. For our problem, we choose the “nearest available” dispatching policy, which
sends the closest available ambulance to an arriving call. This policy is a common
practice found in many EMS call centers in Korea.

In the model, we have one principal decision variable and two auxiliary
variables:

• integer variable xj
t that indicates the number of available ambulances at station j

at time t
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• (auxiliary) binary variable yj
d that indicates whether a call d is serviced by

ambulance located at station j
• (auxiliary) binary variable zj

t that indicates whether there is any ambulance
available at station j right after an ambulance is dispatched at time t

Note that xj
0 defines the ambulance locations at the beginning of a planning

horizon, hence it is the location solution for our problem. Also note that yj
d specifies

ambulance dispatching decisions for call d, and it is determined by the nearest
available dispatching policy assumed in our model.

Before presenting the full formulation, the notation used in the model is
summarized in Table 1.

Here, we rewrite (4) by using Wj
d and ar. The first term in (4) is the number

of covered demands. Wj
d specifies whether demand location d can be covered by

station j or not. Using Wj
d, fr.x/ can be written as

P
d2D

P
j2V Wj

d � yj
d. The second

term in (4) is related to the non-anticipativity constraint. We set the constraint as
.N �1/x1 D x2 C� � �CxN , and the second term in (4) can be written as �jar

P
j2V xj

0,
where �j is jth element of jVj dimensional vector �, and ar D N � 1 if r D 1,
otherwise, �1. Then, for given �, the objective function can be written as

Table 1 Summary of notation

Symbol Definition

i; j Ambulance station index

t Time index

d Call index

V Set of candidate ambulance locations

T Final time horizon

D Set of calls occurred during a planning horizon

q The number of maximum ambulances

ad Arrival time of call d

Nt The number of calls during time interval t

�
j
d Distance, measured in time, between call d and station j

Rj
d Turn around time of call d by an ambulance in station j

S Time standard for coverage

M Sufficiently large number

At Set of calls arriving at time t

Bj
t Set of calls for station j satisfying the condition, ad C Rj

d D t

Wj
d Constant: 1 if �

j
d � S; 0, otherwise

xj
t Variable: the number of available ambulances at station j at time t

yj
d Variable: 1 if ambulance j dispatched to call d; 0, otherwise

zj
t Variable: 1 if at least one ambulance is available at station j right after time t;

0, otherwise
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max
X
d2D

X
j2V

Wj
d � yj

d C �rar
X
j2V

xj
0; (5)

The constraints of the model are constructed to impose the nearest–available
dispatching policy. Before describing the constraints we introduce two assumptions.
First, ambulances on its way back to its home station are not available for service
until it returns to the station. Second, if a call arrives and all ambulances are busy
at the moment, the call is either lost or served from other EMS systems. These
assumptions can be justified by the fact that probabilities of the events are very
small. In addition, standard practice for operating ambulances in Korea is to return
its home station after serving a call in order to get ready for next call arrivals. With
these assumptions, the objective function (5) is solved subject to the following set
of constraints:X

j2V

xj
0 D q (6)

X
j2V

yj
d � 1 8d 2 D (7)

xj
t D xj

t�1 �
X

d2At�1

yj
d C

X
d2B

j
t

yj
d 8t � 1; j 2 V (8)

X
d2At

X
j2V

yj
d D min

0
@Nt;

X
j2V

xj
t

1
A 8t � T (9)

xj
t �

X
d2At

yj
d � zj

t 8t � T; j 2 V (10)

xj
t �

X
d2At

yj
d � M � zj

t 8t � T; j 2 V (11)

yj
d � �

j
d � M.1 � zi

t/ C zi
t � �

j
d t D ad; 8d 2 D; i; j 2 V; i ¤ j (12)

xj
t 2 Z

C 8t � T; j 2 V (13)

yj
d 2 f0; 1g 8d 2 D; j 2 V (14)

zj
t 2 f0; 1g 8t � T; j 2 V (15)

Constraint (6) limits the total number of ambulances to be located at q.
Constraint (7) ensures that at most one ambulance is dispatched to serve a call.
Constraint (8) determines the number of available ambulances at station j at the
beginning of time interval t, xj

t. It is computed by subtracting ambulances dispatched
from station j to calls during time period t � 1 and adding ambulances that are
returning to the station at the beginning of time interval t. Constraint (9) ensures the
number of ambulances dispatched during time interval t equals to either the number
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of calls during time interval t or the number of available ambulances at the beginning
of the time interval. By constraint (10) and (11), zj

t becomes one if station j has at
least one ambulance at time t C �, where t C � is the time right after a dispatching
decision at station j is made. Then, constraint (12) ensures ambulances are assigned
based on the nearest available dispatching policy. It states that travel time for call d
from station j is smaller than any other station at which ambulances are available.
It should be noted that other types of dispatching policy based on priority (e.g.,
regionalized response Aboueljinane et al. 2013) can be modeled in the same way by
changing the travel time to corresponding cost measures.

In Algorithm 1, we need to solve this sub-problem for all scenarios per each
iteration, for a large number of iterations. Therefore it is important to quickly solve
the sub-problems to make Algorithm 1 computationally efficient. Unfortunately, our
initial tests show that commercial LP solvers—we used CPLEX—cannot solve the
sub-problems fast enough, and we decide to develop a meta-heuristic algorithm to
quickly obtain near optimal solutions. In this study, we use Variable Neighborhood
Search (VNS).

In VNS, we first define several neighborhood structures, Nk.k D 1; : : : ; kmax/. A
neighborhood structure specifies distance between two candidate solutions, which
is used to identify neighbors for current solution x. VNS uses several neighborhood
structures to avoid local optima by exploring a large solution space, including distant
neighborhood of a current solution. The solution structure for location problem is
simple and easy to measure the distance between two feasible solutions. For these
reasons, VNS algorithm can be readily implemented for location problems. We
follow the basic structure of VNS described in Hansen and Mladenovic (2001), and
it is depicted in Algorithm 2.

In Algorithm 2, Shaking.x; k/ randomly generates a solution x0 from the kth

neighborhood of x. After the solution x0 is obtained, a local search method
LocalSearch.x0/ is applied to improve solution x0. In our implementation, we search
all neighborhoods of x0 in N2 and return the best solution among them. Then, the
resulting solution x00 is accepted if x00 is better than current incumbent solution.

Algorithm 2 Basic VNS
Select the set of neighborhood structures Nk, k D 1; : : : ; kmax

Generate initial solution, x
repeat

k 1

repeat
x0  Shaking.x; k/

x00  LocalSearch.x0/

if accept.x00/ then
x x00

k 1

else
k kC 1

end if
until k D kmax

until stopping condition is met
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For the implementation of VNS, we define the set of neighborhood structures as
follows:

Nk.x/ D fx0 W jx n x0j D jx0 n xj D kg:

If a location solution x0 differs from x in k locations, i.e., jx n x0j D jx0 n xj D k,
then x0 belongs to a neighborhood of x in neighborhood structure Nk.

For an initial solution to feed to the VNS algorithm, we solve the integer
program (5) without considering the constraints for the nearest available dispatching
policy, (9)–(12), (15). That is, we solve for the objective function (5) with a partial
set of constraints (6)–(8), (13)–(14). In doing so, we need a new constraint to replace
the original constraint (9):

X
d2At

yj
d � xj

t 8t � T; j 2 V:

This is to ensure the number of ambulances dispatched during time interval t do
not exceed the number of available ambulances available at the beginning of the
interval t.

Results

We test our solution algorithm by using EMS call data for the city of Daejeon
in Korea. EMS log data for the month of January of 2010 is used to generate
a set of scenarios. The algorithm determines ambulance locations based on the
scenarios. Then the solution is evaluated by using the call data from February of
2010. For evaluation, we measure the percentage of the calls to which an ambulance
arrives within 10 min. For call arrivals, we used the actual data and ambulances are
dispatched following the nearest available dispatching policy. As a comparison, we
obtain ambulance location solutions by using MALP II (ReVelle and Hogan 1989)
and BACOP2 (Hogan and ReVelle 1986). MALP II is a probabilistic ambulance
location model to maximize the number of demands covered. Incorporated in the
model is the availability constraint, which requires a demand point be covered by
multiple number of ambulances. Workload for ambulances determine how many
ambulances should cover a demand point to ensure certain level of ambulance
availability (60 % in this experiment). BACOP2 also aims to address the availability
of ambulances, but it does so by requiring a fixed number of ambulances cover a
demand point.

In the experiment, we vary the number of ambulances q to locate, and compare
the performance of location solutions by the three approaches. Figure 1 shows the
results for q D 3; 5; 7; 10.

In Fig. 1, we observe that our algorithm performs better than the other location
models. In comparison with MALP II model, when the number of ambulances is
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Fig. 1 Fraction of calls served by an ambulance within 10 min

low, the improvements by the proposed algorithm is significant. MALP II model
tends to collocate ambulances in order to satisfy the availability constraint, leaving
a large number of demands left uncovered. More importantly, it should be noted
that MALP II uses busy fraction, which is estimated as an average value and
ignores temporal variations in call arrivals. This possibly makes the estimated
busy fraction an over-estimation for the night hours and under-estimation for the
day hours. The performance gap between the proposed algorithm and BACOP2
increases as the number of ambulances is high. BACOP2 model tends to spread out
ambulances in order to maximize the deterministic coverage. While such strategy
seems appropriate when the number of ambulances is low, an approach that takes
into account the availability of ambulances (the proposed approach and MALP II in
this case) offers a larger benefit as the number of ambulances increases.

Conclusion

In this paper, we develop a model and a solution algorithm to locate ambulances. In
particular, our model addresses two key factors in ambulance location decisions:
a dispatching policy and temporal variations in call arrivals. The novelties of
our model are (1) it explicitly describes an ambulance dispatching policy in
an ambulance location problem so that the interaction between two decisions,
i.e., ambulance dispatching and locations, is considered (2) our model allows us
to consider the temporal variations in call arrivals which allows to incorporate
ambulance availability in a more precise fashion than classical probabilistic location
models.



110 I. Sung and T. Lee

Specifically, we model this ambulance location problem as an integer program
with the constraints for the nearest available dispatching policy. We applied stochas-
tic programming to incorporate various call arrival patterns. To obtain solutions,
we implement a scenario decomposition approach which separately solves sub-
problems for each scenario while maintaining the non-anticipativity. The solutions
of the sub-problems are obtained by using a VNS method, a meta-heuristic algo-
rithm. The experiments demonstrate that by considering the ambulance dispatching
policy and temporal variations of call arrivals, it delivers superior performance
compared with some of the classic location models.
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